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ABSTRACT

A random stress-history which is proportional to the stationary

responee of a single-degree-of-freedom vibratory system to wide-band

Gaussian excitation is assigned a damage based on the Palmgren-Miner

hypothesis and an idealized S-N law. The damage accumulated in

time T is a random variable because of the randomness in the number

of "cycles" and the randomness in the amplitudes of the "cycles."

The mean and variance of the damage are obtained by two procedures:

one which accounts for both sources of randomness and one which

neglects the randomness in the number of "cycles" contained in the

interval. The two procedures give the same asymptotic result when

the bandwidth shrinks to zero. The theoretical results are illustrated

by curves computed for a particular example.



The Variance in Palmgren-Miner Damage
Due to Random Vibration

A damage D(T) can be associated with an interval T of a stationary

narrow-band random stress-history s(t) by using the Palmgren-Miner

criterion Li . This damage is a random variable taking on different

values for each sample stress-history. In 1954 Miles [ 2] evaluated

the expected value or mean of the damage when the stress-history was the

response of a single-degree-of-freedom vibratory system to white Gaussian

excitation and the S-N diagram or fatigue "law" for the material was

assumed to have the form

NS = constant = 4.

We shall be concerned with the same situation and will evaluate the variance

of the damage in addition to the mean.

The damage D(T) when T is large is the sum of a large number of

incremental damages each associated with a single "cycle'." The randomness

in D is due to the randomness in the amplitudes of the individual "cycles"

and also due to the randomness in the number of "cycles" contained in the

interval T. We have made two evaluations of the variance; the first takes

into account both sources of randomness while the second is an approximate

solution which considers only the randomness in the amplitudes and neglects

the randomness in the periods of the "cycles." The two solutions are shown

to approach one another in the limit as the bandwidth is decreased to zero.

In both cases the major difficulty in the analysis is due to the strong
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correlation in the incremental damages of succeeding "cycles." It has been

necessary to make approximations which are only valid when T is long in

comparison with the decay time of the correlation.

It does not appear possible to obtain the complete probability

distribution of the damage D(T) for finite T although the central limit

theorem can be invoked to show that inthe limit as T-,oothen the

distribution of D becomes normal. In this limiting situation the mean and the

variance are sufficient to completely characterize the distribution of D.

1. Mean and Variance of Sums

Let the total interval T be divided into M equal subintervals. With each

subinterval let an incremental damage di be associated. For the moment

we postpone the discussion of how the incremental damage is to be associated.

The total damage
M-1

is the sum of (correlated) random variables. The mean and variance of D

are
/i-i

(3)
M-1

c j

Now since the stress-history is stationary the damage process is also and the

statistical averages needed in (3) are invariant with respect to a translation

of the time axis. Thus

E !D4ig] E[d 4--[_ o
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for arbitrary i and J. The sums in (3) may then be recast 'as follows

Ad-I (5)

k=1

Although the damages in adjacent subintervals may be strongly correlated

dk and d become uncorrelated when k gets large enough and thus0

btvi o(6)

This will be helpful for evaluating (5) for large M.

2. Incremental damage associated with subintervals.

Ordinarily the Palmgren-Miner hypothesis is used to associate a

damage //

with the i-th cycle where Ni is the number of cycles until failure at the

constant stress amplitude Si as given by the S-N diagram or by a relation

such as (1). In order to avoid certain subtleties involved in determining

the peak amplitudes of a random process we consider a slight modification

of the hypothesis in which we associate a damage

/ = _L_ (8)ý2/V
with a zero-crossing of the stress process using the slope i as a measure

of the stress-amplitude. If the expected frequency of the narrow band process

is W, where

a - Ii() _ ~ (~Lw)S



and R('-) and G((',) are the autocorrelation function and spectral density

respectively of the process (assumed to have zero mean) then the equivalent

stress amplitude we associate with a zero-crossing having slope i is

and the number N in (8) is obtained from the S-N diagram using 1(10) for

S. The factor 2 in (8) arises because there are twice as many zero-crossings

as cycles in a narrow-band process; it could be avoided by considering only

the zero-crossings with positive slope but the integrations leadi:ng to (21)

are considerably simpler when we asBociate damage with half-cycles

rather than with cycles. The relation (10) would be strictly correct for

simple harmonic motion at frequency '•4. In a narrow-band process it

represents a good approximation to the amplitude of the stress peak immediately

after (or before) the zero-crossing. We believe that the statistics of the

zero-crossing damage process iw defined will not differ significantly from

the statistics of the peak-associated damage process.

The two evaluations which follow are based on two choices for the

subinterval duration. In the first case the subinterval is taken to have

the duration lit and eventually &t is taken to approach zero. This procedure

permits us to take into account the variation in the periods of the "cycles."

In this case the incremental damage di is taken to be zero if there is no zero-

crossing within the subinterval or to be the value (8) if there is a zero-

crossing. In the second case the variation in the periods of the "cycles"

is neglected and the duration of each subinterval is taken to be 'rr,/IcLo ; ioe.,



-5-

the expected duration of a half-cycle. The incremental damage is taken to

be (8) but here instead of using (10) we find it more convenient to use

the value of S given by Rice's envelope function L3] •

3. First case: infinitesimal subintervals.

The interval T is divided into equal subintervals 4,t such that

M f = T (l

We assume that 4t is so small that the stress-history s(t) can be taken

as a straight line throughout the interval. The fraction of samples which

will have a zero-crossing in a particular subinterval At can be ascertained

by considering the distribution of combinations s(t) and 6(t) where t is

the time at the beginning of the interval. This distribution is described

by the joint density function p(sg). Combinations of a and s which involve

a zero-crossing are those for which

S- 5 < o , >0
* (12)o < S < -" -Aj •< 0

For those samples having a zero-crossing the incremental damage is given

by (8); for those without a zero-crossing there is no damage. The expected

damage in the subinterval 4t is theno -34t• co p V

0j =L (13)
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To evaluate (13) we make the assumption that s(t) is a Gaussian process

so that e

and we assume that (1) is the S-N curve of the material so that using (10)

2N S,(15)

Inserting (14) and (15) into (13) yields

Finally inserting (16) and (11) into (5) leads to the mean or expected

damage for an interval T

where is the expected number of zero-crossings with positive slope; i.e.,

is the expected or mean frequency in cycles per unit time

( Jo(18)

The result (17) although derived differently is identical with that of Miles L2]

The above derivation can be repeated using the square of (15) to obtain
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the menan square damage associated with the subinterval At.

_'4I -LES -?- (18)

The derivation for the correlation terms E [dodj is similar but more complex.

The product dodk is zero unless zero-crossings occur in both the zero-th and

k-th subintervale in which case the product is given by multiplying together

terms of the form (8) which in turn depend (10) on the slopes i at the

zero-crossings. The fraction of samples which will have zero crossings in

bot~h subintervals can be ascertained by considering the distribution of

combinations s(t), i(t), s(t + k 4t) and j(t + kat) which is described

by the four-dimensional Joint probability density p(s(t), s(t), s(t +2ý);

s(t + Z )). Again by integrating over the subregion where both subintervals

have zero-crossings we find, analogous to (13)

for kOO. To evaluate (19) we make the assumption that s(t) is a Gaussian

process so that

wh~ere the A- paraweters. depend on the autocorrelation of' the stress process and

are evaluated in Sec. 4. Again we assume that the 1 ncremetal damages are
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given by (15) but here to render the integral tractable we make the additional

assumption that the exponent cK is an odd positive inteer. In this way we

find -

"A r" t
E "Z0 kJ 2 A

Finally to obtain the variance in the total damage ve insert (21), (18)

and (16) into (5). At this time we also let At-,- 0 thereby converting the

summation into a Riemann integral. With k At '%> we find

Z ' (22)

Further evaluation requires a specific choice for the autocorrelation function

R(1) in order to specify the A-parameters and the hypergeometric function.

4. Specialization to the response of a single-degree-of-feedom system.

We limit our discussion to the case where the stress history s(t) ie

proportional to the response of a lightly-damped single-degree-of-freedom

oscillator when excited by stationary white noise; i.e., s(t) is taken to

satisfy the differential equation

where • is the damping ratio and (JJ is the undamped natural frequency. When

the excitation f(t) is stationary white noise the autocorrelation function of
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the response is

FR40 (24)

where p = -F1 Lc is the damped natural frequency and 0CT is the mean

square stress. The -paraneters are obtained from R(Z ) according to the

following definitions

S' -fl,,. ±

iL- A Ro 4- PR() Pj iý o (
A=• A_4 • - PtE/Th'o) -9(779 - i~~t?'&R•) (25)

A 4  R -c) 2' 6) '-2 /9( z: P1 2(-c)P(T-)

Using (24) we find that the expected frequency of the narrow band process,

Wt4 of (9), is just the natural frequency W. - It is thus possible in

principle to insert (25) and (24) in (22) and evaluate the variance of the

damage. The integration appears however to involve formidable difficulties.

We therefore discontinue the exact evaluation and consider an approximation

for small damping0 We use the following small 4 approximations to (25) for

use in (22)

,.,- .•,, ( , - l~t r,5¼'~~- i - Cd .,.; --- - (aC),~ ~ ~ 6 2--:.-.: Z (' d-e-;,,z) *

./1.4 - & -,,ltc,

-- C - C o_• - c L -

-A A2
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The argument of the hypergeometric fhnction thus oscillates with period

J/ tt; •The integrand in (22) has peaks at n-/,% and falls to

zero at (2n + l)r/2c , n = 1,2,.. . Furthermore the integrand is

negligible in the range 0 < r/ /2<. We have been able to obtain a

good approximation to the integral L4] by substituting a smoothed integrand

in which the expression in braces in (22) is replaced by

F> n,) c', -219;I (27)

and the limits of integration are changed to r/2cQ and •C. The

approximations involved are good for I &C i and 2 'OhT 1 i. The result•2

is

D .71) /t -r Lv (28)

where the f-quantities are given by

7"

and are tabulated in Table I. A partial check on the accuracy of approximation

was made by comparing the smoothed integral used above with the results of a

numerical integration of the exact integral. For (\= 9 and 7" 1/60 the
2



discrepancy was less than one part in 300. The errors tend to increase

rapidly with C0 but for the range tabulated in Table I the result (26) is

probably satisfactory for engineering purposes for < 0.05 (Q >10) if the

expected number of cycles °-j)T is very large compared with Q = 1/2 In

this range very little additional error is made by neglecting the f2 and f3

terms in comparison with the fl term in (W8). Thus in the range indicated

we may use

VaroL D(T) 6,21 (30)

which indicates a linear growth of the variance with T and an inverse

dependence on the damping ratio 5 for a given material and a fixed mean

square stress level.

If we denote the standard deviation of the total damage by 93) we

can combine the results (17) and (so) for the mean and variance into the

following ratio

Eli ( , If) '

which indicates that the relative variance for a given material decreases

in inverse proportion to the square root of the product of T and the bandwidth

5. Second -ase: half-cycle subintervals.

Here we consider the stress process s(t) to consist of a sequence of

half-cycles each of duration lI/o ;i e., we neglect the random variation in



periods. With each half-cycle the incremental damage (8) is 3./2N where

the S-N diagram or (1) is used to relate N to a stress amplitude S associated

with the half-cycle. For this purpose we find it convenient to use Rice's

envelope function S(t). For a narrow-band process Rice i-3-f has shown that the

first and second order probability densities for S(t) are

•Z_.2 S. -~- , ,• > 0

-, ~k (32)

where G-,'is the mean square of the process s(t) and the quantities A = C 4-B2

and B are functions of the time interval t. - to and depend on the spectral

density of s(t), They will be described later.

The expected value of the incremental damage is

3Ms (33)

Substituting from (1) and (32) yields

Note that this is equivalent t9 (16) with At = i/9d. This is essentially

the teclnique used by IMileo ý2?] in deriving (17). An exactly similar evaluation

using (/!a/)2 in place of l/2N in (33,) leads to

E •.•! _ 1, 12 ,(35) L ÷
4~~ --1
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which is equivalent to (18) with t 71W/c, .

Turning next to the correlation terms in (5) we have

do d Ok S" S (36)'

which on substitution from (1) and (32) yields

E Ol d ( , % h (37)

which is now quite different from (21) because (37) is the correlation

between two half-cycles separated by ki/,.J 6 while (21) is the correlation

between two infinitesimal intervals separated by kA t. Finally to obtain

the variance we insert (37)), (35)) and (34) into (5) to obtain the variance

after M half-cycles (T = M-/w, = M P1/2)

a \ D(T)]0 --I (I +,112)) +

A-1 (28)

Farther evaluation requires a specific choice for spectral density 0(5))

of the process in order to specify the parameter B and hence the hypergeometric

function.



6. Speciali.ation to the response of a single-degree-of-feedom system

We limit oar discussion again to the process described in Sec. 4. The

spectral density of the process is

. .-, -- (39)

and the parameter B follows from the following operation

2- 2,

* ~ o&~(&-&6)0~J (140)

This is quite complicated in general, but here we are only interested in

times . of the form kir/J,),-, and moreover we will again accept the same type

of small damping approximations used in Sec. 4. Under these circumstances

we find simply

and the term in the braces being summned in (38) becomes

(42

At this stage there is considerable similarity between the term being summed (i4_)

and the smoothed Integrand. term (27). In fact the sun may be considered as a

crude attempt to approximate the integral, The hypergeometric functions in ( 38)
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can be expanded in series and the order of summations interchanged. The

k-summations involve simple geometric progressions which can be summed. When

M is large and ý is small the resulting series can be recognized as equivalentIVI
to the functions defined in (29). In this way we obtain

(43)

for the variance when is small and the expected number of cycles ;£T 1-,

;Large. Again if 5 ý),T is large (even though • is small) we can dispense

with the final two terms and use the asymptotic form

which should be compared with (30). We note that the discrepancy between the

first case which accounted for the random variations in periods and the second

case which neglected this source of variance is small for light damping and that

the ratio of the two expressions (30) and (044) approaches unity as 5-:O°

7. Example

Consider the system shown in Fig. 1 in which the vehicle has a stationary

random acceleration with uniform spectral density 0.5 g2 /cps. With the
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following data

Ll length of cantilever, = 4.0"

h, side of square cross section = 0.25"

E, 758-T6 aluminum alloy = 10.3 x 106psi
11 is =1- 6.09

S " = 2 x l05 psi

m , mass of one cubic inch of steel = 7.28 x 104

lb -ec 2 /in

the natural frequency of the system is

L• =4.65 rad/sec (73.9 cps)

and the rms stress level of the narrow-band stress response in the extreme

fibers at the root of the cantilever is

(45)

whereý is the damping ratio of the system. With these values it is now possible

toAthe expected damage (17) and the standard deviation of the damage (31)

as functions of r) and T. The value 2.32 for fl(C<) is obtained from

interpolation in Table I. The results are shown in Fig. 2 for four different

values of system damping. The expected damages appear as straight lines with

unit slopes indicating linear growth with time. The variance in the accumulated

damage is suggested by the curves showing E [Dj ±+ T. ote here that the

primary effect of the damping is through its action in setting the rms stress

level (Vj) while a secondary effect if its action in controlling the deviation of
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the damage through the correlation of the damages of successive cycles (31).

It is also of interest to compare the two solutions (30) and (Q1&4) for thc

variance in the range covered by Fig. 2. We find a 25% discrepancy in the

variance for Q =10 and 2.5% forQ = 100. The discrepancies in the deviation

(Z3 would be about half of these values.

The Palmgren-Miner criterion for failure is D .1 Fig. 2 indicates

that when the average damage reaches unity there is actually a distribution

of damage across the ensemble of sample histories. There will correspondingly

be a distribution of time-to-failure TF. This distribution is unknown but

the central limit theorem can be invoked to show that it also becomes

asymptotically Gaussian as T -o and that the plus and minus one-sigma

limits for TF are asymptotically the points where the plus and minus one-sigma

curves for damage cross D = 1.
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Table i Quantities in Equation (28) Which Depend on

the Fatigue Law Exponent (\ .

fI0 )f2 (, .

I.0u414 0.00323 0.0796

3 0.369 0.0290 0.212

5 1.280 0.0904 0.679

7 3.72 0.223 2.33

9 10.7 0.518 8.28

11 31.5 1.230 30.0

13 96.7 3.06 111.2

15 308. 8.11 415,



-19-

REFERENCES

1. See, for example, F.A. McClintock, Fatigue of metals, Chapter 6 in
"Random Vibration," edited by S .H. Crandall, Technology Press and
John Wiley and Sons, N.Y.) 1958.

2. "J.W. Miles, On structural fatigue under random loading, J. Aero. Sci.,
21, 753-762 (1954).

3. S.O. Rice, Mathematical analysis of random noise, BeLl System Tech. Journ.,
23, 282-332 (1944);.) 24, 46-156 (1945). Also reprinted in N. Wax,
"Selected Papers on Noise and Stochastic Processes," Dover Publications,
N.Y., 1954.

4. W.D. Mark, The inherent variation in fatigue damage resulting from random
vibration, PhD. Thesis, M.I.T., Cambridge, Mass., August, 1961.



-20-

CAPTIONS FOR FIGURES

Fig. I (a) Random stress history at A is due to random vibration of

vehicle. (b) Schematic excitation - response diagram.

Fig. 2 Palmgren-Miner danmage at root of cantilever beam. The mean

damage expected is shown together with the plus and minus

one-sigma limits.
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